
By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Track #1, 4:00PM

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Best Practices to Make (Very) Large
Updates in Neo4j

Fanghua(Joshua) Yu
Field Engineering Lead, APAC.

joshua.yu@neo4j.com

https://www.linkedin.com/in/joshuayu/

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Introduction
Fanghua(Joshua) Yu

Pre-Sales & Field Engineering Lead,
Neo4j APAC

Joshua.yu@neo4j.com

Let’s know each other …(later)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Ever complained，that why it is SO SO
SO SLOW to update data in Neo4j?

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

And even worse，sometimes Neo4j
database service just stopped

responding?

Java OutOfMemory Error !!!!!!!

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Agenda
• Understand How Neo4j Handles Updates
• Strategies to Optimize Updates
• A Case Study: Making Updates with Limited Memory
• More on Cypher Tuning
• Summary

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

How Neo4j Handles Updates
• (In most of the cases) Every Cypher statement runs within a thread.
• Database updates defined in one Cypher statement are executed as

a Transaction.
• ACID: consistency is critical.
• Neo4j keeps all context of a Transaction in JVM Heap Memory.
• Large updates è large memory

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

How Neo4j Handles Updates(cont.)
• Remember this?

LOAD CSV FROM …
MATCH…
MERGE…
CREATE…

• When loading large amount of data, it is necessary to specify batch
size to keep Transaction in a manageable size.

USING PERIODIC COMMIT 1000

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

For any Cypher statement, we can use APOC procedures to achieve the same, i.e. limit the transaction size.

There are APOC procedures built for this purpose:
- apoc.periodic.commit()
- apoc.periodic.iterate(): see example below

The first
parameter is a
Cypher query to
return a
collection of
node ids.

The second parameter
is the Cypher to
update database
based on results
returned by the 1st
query.batchSize defines

number of
instances within a
Transaction.

Whether to
make updates in
parallel?

Whether to have the
whole list executed
as one
Transaction?

How Neo4j Handles Updates(cont.)
APOC stands for
‘Awesome Procedures of
Cypher, or ‘A Package of
Components’, or the
name of a crew member
on Nebuchadnezzar.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Strategies to Optimize Database Updates

Let’ have a look at all relevant aspects that can impact / improve the efficiency of database updates.

1) Hardware

3) Execution

5) Parallel Processing

6) Query Tuning2) Monitoring

7) Other

4) Data volume

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

A Case Study
We will use the Stackoverflow open dataset for the tests below.

ü Contents：User, Post, Tag
ü Data volume：~31 million nodes，78 million relationships，260 million properties

For detailed steps on how to download and import stackoverflow data into Neo4j, please check this page:

https://neo4j.com/blog/import-10m-stack-overflow-questions/

https://neo4j.com/blog/import-10m-stack-overflow-questions/

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Test Case
The meta graph / meta model of Stackoverflow.

The Cypher statement to test:

For each Post node, we find User nodes that are connected

to it via POSTED relationship, and then
save name of User node as property
postedBy of Post node.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Test Environment

Hardware Specs：

§ Lenovo Ideapad 510

§ Intel i-7 CPU，4 cores
§ 12GB DDR4 RAM

§ Seagate 2TB SATA 2 Mechanical

§ Windows 10 Professional

To compare metrics, there is a Samsung
256GB SSD external HD connected via
USB 3.0 port.

Neo4j：

§ Neo4j Enterprise 3.3.1

§ Database size：16.5GB
§ Java Page Cache：2GB

§ Java Heap：max 4GB

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

neo4j.conf

dbms.memory.heap.initial_size=2g

dbms.memory.heap.max_size=4g

dbms.memory.pagecache.size=2g

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

1 - Hardware
Firstly, let’s run some tests on our hard drives. Data updates are mostly Random I/O
operations so disk performance would make big differences.

Local Mechanical Disk External SSD via USB3.0

Sequential I/O: SSD is
about 2 x local HD

Random I/O: SSD is
about 15~150 x local

HD!

Tool used: CrystalDiskMark 64 v6

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

2 - Monitoring
During the tests, we monitor usage of CPU, RAM and disk, using Windows Task
Manager, JConsole(the JMX client bundled with JDK).

To enable JMX metrics in Neo4j(Enterprise Edition ONLY) it involves these steps:
1) Neo4j Configuration
https://neo4j.com/docs/java-reference/current/jmx-metrics/
2) and set sole privilege to file jmx.passoword file:
https://docs.oracle.com/javase/8/docs/technotes/guides/management/security-
windows.html

https://neo4j.com/docs/java-reference/current/jmx-metrics/
https://docs.oracle.com/javase/8/docs/technotes/guides/management/security-windows.html

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

2 - Monitoring(cont.)

In Task Manager, disk
speed is what we care
about.

Jconsole: Heap
memory usage. Jconsole: # of threads

Jconsole: CPU usage
rate.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

3 - Execution
Let’s start with updating 1 million nodes:

We record system metrics:
§ CPU
§ RAM
§ Disk speed
Execution in cypher-shell to avoid impact from browser.

Filtering on id() to limit the number of
nodes to update.

Accessing nodes and relationships
via their ids is the most efficient
method.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

TC#2.1 Cypher-1M

Actual updates # 943K
Elapse(s) 46.5
Write speed(nodes/s) 20279
CPU usage <25%
Java Heap (MB) <750
System disk* <30%
DB disk max/avg
speed(MB/s)

25/10

* System disk is the local mechanic HD on which
OS and Neo4j are installed.

3 - Execution(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

TC#2.2 Cypher-1.5M

Actual updates # 1.49M
Elapse(s) 58
Write speed(nodes/s) 25657
CPU usage <25%
Java Heap (MB) 3500
System disk* <20%
DB disk max/avg
speed(MB/s)

25/10

When we tried to update 1.5 million nodes
in one Cypher statement, the Heap memory
usage has reached 3.5GB which is close to
the limit.

As all interim status of a Transaction are
kept in Heap memory for the purpose of
Roll-back, the more updates in a
Transaction, the more Heap it would need.

3 - Execution(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

TC#2.3 Cypher-2M, failed.
Not surprisingly, when trying to
update 2 million nodes Neo4j ran out
of Heap memory and service stopped
due to OutOfMemory error.

In a summary, it would require about
2.5GB of Heap memory for every 1
million updates.

CPU usage rate

So, does it mean we have
to add more memory?

Does it mean it would need
at least 65GB of Heap

memory to update all 26
million nodes in a

transaction?

？
？?
？？？

3 - Execution(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

For any Cypher statement, we can use APOC procedures to split large transaction into smaller batches, and
each batch is executed as a transaction too.

There are APOC procedures built for this purpose:
- apoc.periodic.commit()
- apoc.periodic.iterate(): see example below

The first
parameter is a
Cypher query to
return a
collection of
node ids.

The second parameter
is the Cypher to
update database
based on results
returned by the 1st
query.batchSize defines

number of updates
within a
Transaction.

Whether to
make updates in
parallel?

Where to have the
whole list executed
as one
Transaction?

APOC to the rescue(again!)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

APOC to the rescue(again!)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

TC#3.2 ~ 3.6 Find the optimized batchSize

Test Case # 3.2 3.3 3.4 3.5 3.6
batchSize 2000 200 10k 15k 20k
Actual updates # 1M 1M 1M 1M 1M
Elapse(s) 38 47 28 25 36
Write speed(nodes/s) 26315 21280 35714 40000 27778
CPU usage <25% <30% <40% <50% <50%
Java Heap (MB) <900 <900 <900 <2400 <2400
System disk* <30% <30% <40% <40% <40%
DB disk max/avg
speed(MB/s)

-/10~18 -/10 -/30 -/32 -/32

With parallel = false, iterateList = true

4 – Data Volume

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

4 – Data Volume(cont.)
JConsole

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Based on previous tests, we figured out the I/O is about 26~30MB/s. batchSize defines
how many statements to commit in each batch. For a total number of 1 million nodes to
update, we can see:
§ The larger batchSize, the less transactions to commit;
§ By increasing batchSize from 2000 to 15k, the overall processing time has been

reduced by 17%;
§ When the batchSize is over 20k, the overall processing time actually increased by 19%,

likely caused by the disk I/O capacity limit;
§ Too small batchSize, say 200 in our test, has more batches and a longer overall

processing time(+59%)

When batchSize is 2000, peak write has reached 18MB/s(60% of the max). In order to
reserve some bandwidth to other thread, we will use it in the following test cases.

4 – Data Volume(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

APOC to the rescue(again!)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

5 - Parallel
TC#4.1 With parallel = true

batchSize 500
parallel true, 4 cores
iterateList true
Actual updates # 1M
Elapse(s) 18.2
Write speed(nodes/s) 54945
CPU usage <30%
Java Heap (MB) <800
System disk* <20%
DB disk max/avg
speed(MB/s)

-/41

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

5 - Parallel(cont.)
TC#5 parallel=true, more updates

batchSize 500
parallel true, 4 cores
iterateList true
Actual updates # 2M 4M 10M 15M
Elapse(s) 43 117 290 403
Write speed(nodes/s) 46511 34188 34482 37220
CPU usage <55% <55% <55% <55%
Java Heap (MB) <900 <900 <900 <900
System disk* <20% <20% <20% <20%
DB disk max/avg
speed(MB/s)

-/45 max -/46 max -/60 max -/90 max

Compared to
TC#3.2: 26315 Compared to

TC#3.2: <25%

Compared to
TC#3.2: 18MB

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Some findings：
§ Parallel processing is more efficient
§ Be careful about locking conflicts

0

10000

20000

30000

40000

50000

60000

Cypher iterate -
single

iterate -
parallel

iterate - 2M iterate - 4M iterate -
10M

iterate -
15M

Speed(nodes/s）

Speed(nodes/s）

5 - Parallel(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

6 – Query Tuning

What the results would look like？

So far, in our Cypher statement, it returns node id:

What if it returns node as object:

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

6 – Query Tuning(cont.)
TC#6 Return node objects.

batchSize 500
parallel true, 4 cores
iterateList true
Actual updates # 1M 2M 4M 8M
Elapse(s) 34 67 121 219
Write speed(nodes/s) 29411 29850 33057 36529
CPU usage <55% <60% <80% <89%
Java Heap (MB) <1400 <2200 <1800* <2400
System disk* <20% <20% <20% <20%
DB disk max/avg
speed(MB/s)

-/- -/- -/- -/-

Compared to
TC#5: 46511

Compared to
TC#5: 43s

Compared to
TC#5: 900MB

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

TC#7.2 The full update.

batchSize 500
parallel true, 4 cores
iterateList true
Actual updates # 26,545,725
Batches# 1006
Elapse(s) 26387
CPU usage <42%
Java Heap (MB) <1800
System disk* <20%

6 – Query Tuning(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

This is no longer an issue in newer Neo4j versions.

*** Tested on Neo4j 3.5.5 with local SSD drive:
*** max heap: 3.5GB, CPU: 73%

CALL apoc.periodic.iterate(
"MATCH (p:Post) RETURN id(p) AS postId",
"MATCH (p:Post) <-[:POSTED]- (u:User) WHERE id(p) = postId SET

p.postedBy = u.userId",
{batchSize:2000, parallel:true, iterateList:true}

);

6 – Query Tuning(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

PROBLEM SOLVED！

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

With large query or update, it is ALWAYS recommended to EXPLAIN and / or PROFILE the query before it is sent to database.

Advanced Cypher Training modules can give you more details on those commands and how to analyse efficiency of execution plan.

More about query tuning.

6 – Query Tuning(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Sometimes, when importing data, even if USING PERIODIC COMMIT is used, it’s still possible to get OutOfMemory error!

This can be caused by:
1) trying to do too many steps for each line read;
2) having eager operator that disables periodic commit.

More about query tuning.

6 – Query Tuning(cont.)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

38

Plan evaluation are Eager or Lazy
! Most query evaluation is lazy:

○ Operators pipe their output rows to their
parent operators as soon as they are
produced.

○ Child operator may not be finished
before the parent receives and
processes rows.

● An Eager operation can take 2 forms:
○ An EagerAggregation step caused by

any of the aggregation functions (e.g.
count, sum). This is normal and of lesser
concern.

○ An Eager step caused by a reference
later in the query to an object modified
earlier in the query.

https://neo4j.com/docs/cypher-manual/current/execution-plans/

6 – Query Tuning(cont.)

https://neo4j.com/docs/cypher-manual/current/execution-plans/

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Eager operators disable PERIODIC COMMIT.

39

PROFILE USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS
FROM 'https://data.neo4j.com/advanced-cypher/movies2.csv' AS row
MERGE (m:Movie {id:toInteger(row.movieId)})

ON CREATE SET m.title=row.title, m.avgVote=toFloat(row.avgVote),
m.releaseYear=toInteger(row.releaseYear),
m.genres=split(row.genres,":")

WITH m, row
MERGE (p:Person {id: toInteger(row.personId)})

ON CREATE SET p.name = row.name, p.born = toInteger(row.birthYear),
p.died = toInteger(row.deathYear)

RETURN m.title ORDER BY m.title

6 – Query Tuning(cont.)

Solutions:
i. Don’t return anything
ii. Return no property.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

40

CALL apoc.periodic.iterate(
"CALL apoc.load.csv('https://data.neo4j.com/advanced-cypher/movies2.csv’)
YIELD map AS row RETURN row",
"MERGE (m:Movie {id:toInteger(row.movieId)})

ON CREATE SET m.title=row.title, m.avgVote=toFloat(row.avgVote),
m.releaseYear=toInteger(row.releaseYear),
m.genres=split(row.genres,':’)

WITH m, row
MERGE (p:Person {id: toInteger(row.personId)})
ON CREATE SET p.name = row.name, p.born = toInteger(row.birthYear),

p.died = toInteger(row.deathYear)",
{batchSize: 500}
)

6 – Query Tuning(cont.)
It is also possible to use APOC procedures:

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

41

// method #1 use pattern matching

CALL apoc.periodic.commit(
'MATCH (p) -[r:PARENT_OF]-> () WITH r LIMIT {limit} DELETE r RETURN

count(r)',
{limit:5000}

)

6 – Query Tuning(cont.)
We’ve covered enough on adding or updating database, what about deleting data?

Let’s have a look at the sample below:

We want to delete relationship (:Post) -[:PARENT_OF]-> (:Post), in total 16,502,856 / 16 millions.

And here is a simple and safe way to do so:

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

42

6 – Query Tuning(cont.)

… but it is not fast enough.

To delete 16 million relationships, it took 8.5 hours, about 539 deletes / second.

Can we do better?

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

43

6 – Query Tuning(cont.)

Yes, of course!

Neo4j has invented a very unique storage structure for nodes and relationships, i.e. fixed width block. All
nodes are stored in the Node Store with a fixed width of 15 bytes, so are relationships in the
Relationship Store with a fixed width of 33 bytes.

Remember the internal id? It is actually the address / location of the node or relation in its store!

As a result, finding a node or relationship by its internal id is the most efficient way!

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

44

// Method #2 use internal id
//
// Find out range of id

MATCH () -[r:PARENT_OF]-> () RETURN min(id(r)), max(id(r))

6 – Query Tuning(cont.)
Here is how we use the idea to do large deletion in a much faster way.

First, let’s find out the low and high limits of internal id for PARENT_OF relationship:

It returns 0 and 16502855. (Feel lucky right?)

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

45

// Method #2 use internal id
//
// Delete relationships in 1651 batches, and each has 10000 deletes.

WITH range(0,1650) AS highr
UNWIND highr AS i1
CALL apoc.periodic.commit(
'WITH range(0,9999) AS lowr
UNWIND lowr AS i2
WITH '+i1+'*10000 + i2 AS id WHERE id < 16502856
MATCH () -[r:PARENT_OF]-> () WHERE id(r) = id DELETE r RETURN 0',
{batchSize:10000}

) YIELD updates
RETURN

6 – Query Tuning(cont.)
Second, we will construct id using nested loop and find relationship by its id before delete it.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

46

6 – Query Tuning(cont.)

and this method finished in just 591s, a 50 times of improvement!

Even if the relationship ids are not sequential like we have here, to access relationship(as well as
node) via its internal id is still much more efficient than a pattern matching query over indexed
property.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Heavy update in a cluster may cause the Leader node too busy to respond. As a result, other Followers may think the Leader is offline
and start a re-election.

Things can be more complicated in a cluster environment.

7 – Other

Replica: read only,
eventual consistency

Core: read + write, real
time consistency

LX Solution: keep transaction
size small enough.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Summary

§ Disk Random I/O performance is critical:
- SSD beats mechanical HD easily.

For the tests we ran, if they were done over mechanical HD, the best ever achieved
was about 7700 nodes/s, only 14% of SSD benchmark

- SSD supports parallel processing much better.

§ Neo4j uses JVM Heap memory to keep interim status of transactions. As a rough estimate, it requires 2.5 ~ 3GB RAM to update every 1
million nodes. As a result, transaction size matters a lot.

§ When loading data from CSV files, remember to include USING PERIODIC COMMIT followed by a number to define batch size / bulk
update size.

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Summary(cont.)

§ Use APOC procedures to control transaction size:
- apoc.periodic.iterate()
- apoc.periodic.commit()

§ It is necessary to run some tests to reach a balance between total number of transactions and batch size, taking available memory into
consideration.

§ Use parallel processing whenever possible(but remember to avoid locking).

§ There is always space to tune your Cypher further.

§ Need more help?

- community

- training modules: Advanced Cypher, Modeling, APOC

- talking to us

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

Hunger Games Questions
1. Which part of memory does Neo4j use to keep transaction status?

A. Page cache
B. Heap
C. Stack

2. Which of the following statement doesn't allow control of transaction size?
A. USING PERIODIC COMMIT 1000 LOAD CSV FROM url ...
B. CALL apoc.periodic.commit(cypherToUpdate, {params})
C. MATCH (n:Node) DETACH DELETE n

3. If you observe frequent Leader re-election in a Neo4j causal cluster, which
item below is NOT the possible cause?
A. Network communication is interrupted.
B. A complex graph algorithm is running on a Read Replica.
C. A heave update statement has been submitted.

Answer here: r.neo4j.com/hunger-games

By Fanghua(Joshua) Yu, Oct. 2019

NODES 2019

THANK YOU!

Comment and feedback:
joshua.yu@neo4j.com

