Collaboration insights from data access analytics "Follow the data"

Ravi Krishnaswamy

Autodesk Inc.

NODES 2019

How Valuable is a Network ?

Reed: the utility of large networks, particularly social networks, can scale exponentially with the size of the network

Hash fingerprints to connect versions Existing use cases

Connecting versions through hashes

Ours is another use case

Log Item: (anonymized-user-id, platform, file-operation, hash-before, hash-after, time)

(u88, 'desktop-win', 'save', **'EF8A09D', 'D9A22B'**, 9320031) (u89, 'mobile-ios', 'open', **'D9A22B', 'D9A22B',** 10311299)

Connecting by hashes at scale

Elements of the pipeline

- Hive data processed in Spark 2.4 cluster
- Scala scripts to clean and export edgelists
- Scala scripts to import to Neo4j with loadCSV
- Postprocess graph to build lineages, interval information, access counts
- Data Exploration: Cypher queries to answer basic questions
- Data Exploration: Visualize graphs (Neovis, Gephi)
- Export queries (Cypher) for more post processing (Pandas)

Db Schema

Industry types that interact

Identify lineages with algo.unionFind()

Web/Mobile/Desktop interaction

Purple: Fingerprint of specific file version

Chain of purple nodes: Lineages

Size of arrow: Number of accesses to specific fingerprint version

Green: Desktop; Red: Web; Blue: Mobile

Lineages and access patterns

Connections by indirect reference to data

\$ match (c:Company)-[]-(pu:ProductUsage)-[]-(d:Device)-[:OPENS]->(fv:FileVersion)-[:XREFS]-(xf:FileVersion) where not exists(xf.lineagePartition) with distinct id(xf) as idx, c.hashedName as cname with idx, count(*) as ct where ct > 2 and ct < 10 match (c:Company)-[u]-(pu:ProductUsage)-[r]-(d:Device)-[o:OPENS]->(fv:FileVersion)-[x:XREFS]-(xf:FileVersion) where id(xf) = idx return c, pu, d, fv, xf, u, r, o, x

What fraction of data is accessed by distinct devices?

Minimum number of file versions per lineage

What fraction of data is accessed by distinct devices?

\$ match (c)<-[:IN_COMPANY]-(:ProductUsage)-[]-(d:Device)-[r:OPENS]->
(fv:FileVersion) with fv, r, c.usageType as em, c.hashedName as name,
r.storageTechnology as st where (em = "Commercial") with distinct
fv.lineagePartition as lp match (l:LineageCluster) where l.partitionId = lp
with l match (d:Device)-[]->(ffv:FileVersion) where ffv.lineagePartition =
l.partitionId with count(distinct d) as dd, l, range(1, 221, 10) as rg unwind
rg as min_in_lineage with dd,l, min_in_lineage where l.numberOfVersions >=
min_in_lineage and dd > 1 return min_in_lineage, count(dd) order by
min_in_lineage

Time Series: access patterns

Takeaways

- Relatively easy to integrate into spark pipelines
- 'Sweet spot' size for data sets
- Flexibility of Graphs: Augmenting/Changing schema
- Rich set of queries possibly by Cypher and plugins algo and apoc
- Rich set of queries to provide input to advanced Analytics/ML

Questions

1. Efficient load of external file data into Neo4j can be achieved with which of the clauses?

- (a) MERGE
- (b) SET
- (c) LOAD CSV

2. The value of a social network of n nodes using Reeds law can be thought to be

(a) O (n)

(b) O (n²)

(c) O (2ⁿ)

3. Name the procedure used in this talk to determine the connected components of the graph